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Effect of a time-dependent field on subdiffusing particles
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We analyze the effect of a time-dependent external field on non-Markovian migration described by the
continuous time random walk (CTRW) approach. The rigorous method of treating the problem is proposed
which is based on the Markovian representations of the CTRW approach and field modulation. With the use of
this method we derive the non-Markovian stochastic Liouville equation (SLE), that describes the effect of this
field, and thoroughly analyze the relation of the derived SLE with equations proposed earlier. This SLE is
applied to the case of subdiffusive migration in which the exact formulas for the first and second moments of
spatial distribution are obtained. In the case of oscillating external field they predict unusual dependence of the
first moment on oscillation phase and anomalous time behavior of field dependent contribution to the disper-

sion which agree with results of earlier works. Anomalous time dependence is also found in the case of a
fluctuating field. The specific features of this time dependence are analyzed in detail.
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I. INTRODUCTION

Brownian motion in an external time-dependent field is
the important stage of many physical and chemical processes
which often strongly affect their kinetics [1,2]. Close atten-
tion has been given to the anomalous (subddifusive) jump-
like motion typical for disordered systems [3,4] and, in par-
ticular, to the effect of a time-dependent field on this type of
migration [5,6]. Usually the motion anomaly is assumed to
be a manifestation of the long memory in the kinetics of
jumps. In such a case the serious difficulty in the theoretical
treatment of time-dependent field effects occurs because of
the subtle interplay of field and anomalous memory effects
which should be properly described.

Subdiffusive processes in time-independent potential V(x)
are traditionally described by the fractional Smoluchowski
equation (FSE) for the probability distribution function
(PDF) p(x,1) [4],

p=—oDi " Lap, (1)
where OD}_“ is the Riemann-Liouville fractional derivative
defined by

t
oD ¢ zﬁgﬁ) df1% (2)
and
Lo==DV [V, - F(x)] (3)

is the Smoluchowski operator, in which D, is a subdiffusion
constant, V, =3/ dx, and F(x)=-V,V(x)/(kgT) is a force. The
FSE (1) can be derived within the continuous time random
walk (CTRW) approach [4] assuming the long time tailed
behavior of the waiting time distribution W(r) for CTRW
jumps: W(f)~ 1/t"*%(a<1).

In the case of a time-dependent field F(x,?) [i.e., time-
dependent L ,(#)], however, no analogs of the FSE are rigor-
ously derived as yet. The main difficulty is in the correct
treatment of the effect of £,(r) evolution during the time of
waiting for jumps. The variant of the FSE which has recently
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been proposed in Refs. [5,6] looks quite reasonable but it is
rigorously justified only for some particular time depen-
dences F(x,1).

In this work within the CTRW approach we rigorously
derive the FSE describing the influence of a time-dependent
field. The derivation is based on the recently proposed Mar-
kovian representation of the CTRW and the non-Markovian
stochastic Liouville equation (SLE) [7]. In the case of deter-
ministic (nonstochastic) time dependence of the field the rig-
orous FSE is shown to reduce to that proposed earlier [5,6].
In the case of a fluctuating field, however, the field effect can
be described only with the derived rigorous FSE. The solu-
tions of this FSE for different time dependences of the force
F(z), for simplicity, assumed to be independent of x, are pro-
posed and discussed in detail.

II. MARKOVIAN SLE

Here we will present the method of treating the effect of a
time-dependent field F(x,7) on CTRW-like processes by re-
duction of the problem to solving the SLE with time-
independent operators.

To clarify the method we first consider the Markovian
(normal diffusion) case: a=1, in which the evolution of the
system is described by the Smoluchowski equation

p=—L()p=D,V[V,p—F(x,0)p]. (4)

For our further analysis it is useful to introduce the evolution
operator determined by this equation,

G(1) = Te T, (5)

The method is based on the representation of the time
dependence of F(x,f) in terms of the dependence on some
Markovian (in general, stochastic) variable z(7):

Li(0) = L(z(0), (6)

whose evolution is described by the PDF o(z,1) satisfying
the Markovian equation

F(x,t) = F(x,z(1)),
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6=-Lo, with 0(z,0) = 0,(2), (7)
in which L is the linear operator in {z} space and [dzo(z)
=1. For brevity, formulas are written assuming that {z} space
is one dimensional, though they are, evidently, valid for any
dimensionality of {z} space. The corresponding examples
will be discussed below.

In this representation the kinetics of the process described
by Eq. (4) is determined by the average evolution operator
which in the space {x®z} is given by the formula

1) = (e Te TNy 2. (8)

where the average (denoted as (- -)) is taken over trajectories
of the stochastic Markovian process in {z} space with fixed
initial (z;) and final (z) coordinates. In particular, the PDF of
interest, py(x,x;|f) averaged over F(¢) fluctuations, can be
calculated as

Um(x7Z;th,'

5F(X,xi|t):fd1fdZiUm(X,Z;Xi,Zi No(z). ©)
The important point of the proposed representation con-
sists in the fact that for Markovian processes in {x ® z} space

the operator Um satisfies the Markovian SLE with time-
independent operators [8],

i\]m == [ﬁl(z) + i’]i\]m' (10)

This equation should be solved with the initial condition
U(x,z:x:,2;]0) = 8x—x;) 8z —z)).

Thus we have reduced the problem to solving the SLE
(10) with time-independent operators, though at the cost of
the extension of the space of the process, which describes the
evolution of the system.

Noteworthy is that the representation (8)—(10) is valid not
only for stochastic functions z(¢) but also for dynamical ones,
which are known to be Markovian as well. For example, in
the model of harmonically oscillating force,

2(t) = z.(t) = 7o sin(wt + @), (11)

the dependence z.(r) can be considered as a coordinate part
of the trajectory of dynamical motion (in the harmonic po-
tential), described by the operator

L=vV,- 0’2V, (12)
in the phase space {z}={z,v.} (v.=Z is the velocity) with

o{(z) = dz-z.(z]1)], (13)

where z.(z;|1) is the classical trajectory satisfying the initial
condition  z.(r=0)=z; [in the model (11) =z
=(zg sin ¢,y cos P)].

Evidently, the case of z(¢) represented as a linear combi-
nation of, say, N oscillating functions z;(r)=z,_ sin(w;t+¢)):
z(t)zES’zj(t), can be modeled by coupling of the system un-
der study to N harmonic coordinates zy=(z;,22,...,2y)-

In this representation one can model any deterministic
(dynamical) dependence F(x,f) on time. It is important to
note, however, that the proposed SLE treatment is valid not

i
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only for deterministic but for any Markovian stochastic time
dependences F(x,1) as well.

It is also worth noting that in the case of deterministic
(dynamical) process z(f)=z.(z;|t) (in general, in the multi-
dimensional space {z}), corresponding to the dynamical time
modulation of the force (11), the evolution operator U,,(z)

predicted by Eq. (10) can be directly related to that ém(t) of
Eq. (4):

U, (1) = U,(2,2]0) = G, () [z~ 2.(z|n)].  (14)

The validity of this formula can easily be verified by substi-
tuting it into Eq. (10) and taking into account that £,(z)dz
-z.()]=L(z(1))dz~2.()] and L,(z (1)) = L(?).

III. NON-MARKOVIAN CTRW AND MARKOVIAN
REPRESENTATION

The main goal of this work is the analysis of the effect of
a time-dependent field on CTRW-type (subdiffusive) migra-
tion.

In the CTRW approach the stochastic motion in {x} space
is treated as a set of jumps with jump statistics described by
the waiting time distribution W(r) [3,4]. For time-
independent driving force the non-Markovian equation for
the PDF p(x,1) is conventionally derived by summing up the
contributions of all sets of jumps. In terms of the Laplace
transform R(e€)= [dtp(t)e™, this equation is written as [3,4]

€R(€) = p;— M(€)L R(e). (15)

In this equation p;(x) is the initial PDF and
M(e) =[1-W(e)[eW(e)], (16)

where W(e)=/ oditW(t)e . Note that in the case of subdiffu-
sion, when M(e)=€'"% Eq. (15) reduces to the Laplace
transform variant of the FSE (1).

CTRW-type processes can conveniently be analyzed
within the Markovian representation [7] in which these pro-
cesses are assumed to result from jumplike ﬁl(t) fluctuations
determined by the dependence of ﬁ,(y(t)) on some Markov-
ian stochastic variable y(z) whose PDF #%(y,?) satisfies the
equation

7=-An,  with 7(y[0) = 7:(y). (17)

In this equation A is a linear operator in {y} space and 7,(y)
is the initial condition [[dy 7;(y)=1].

The dependence ﬁ,(y) is taken in the form ﬁl(y(t))
= &yo—y(1)]L,, where y, is the coordinate at which the sys-
tem undergoes the jump described by ﬁl. Similar to the
above-considered model of z(f) modulation of L 1, in the case
of y(r) modulation the evolution of the system is described
by the PDF p(x,y|) in the combined space {x® y}. This PDF
satisfies the SLE type of Eq. (10), which as applied to the
Laplace transform P(e)=[;dip(t)e € is given by
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eP=8x—x)8y—y) —[A+8y-y)L,]P. (18)

Of special interest is the PDF averaged over the y(¢) process,

py(x,x1) = f dy f dyP(x,y:x,yilt)m(y). (19)

The y(#)-controlled (or modulated) process in {x} space
proves to be of CTRW type. Thus the obtained CTRW de-
pends on the initial condition p;(y) and the form of the op-

erator A. In what follows we will consider the nonstationary
variant realized for p,(y)=8(y—y,) [7]. In this variant the
average PDF p,(x,x;|7) is known to satisfy the CTRW-like

equation usually written as applied to R(e)zﬁy(e)
=[odtp,(t)e” [7]. This equation coincides with Eq. (15) but
with

M(e)=M(e) = (Dy/D)elyol(e+ A)yo).  (20)

The behavior of M(e) is completely determined by the
specific features of the controlling process (17). Various
models of this process are discussed in Ref. [7].

IV. CTRW-BASED SLE

The Markovian representation is very suitable for treating
the effect of a time-dependent field on CTRW-like processes.

The corresponding equation is straightforwardly derived
by taking into account that, in accordance with the Markov-
ian representation, this equation describes the Markovian
process in {x®y} space affected by the the driving force
which can be modeled by interaction with the Markovian z(z)
variable. This means that the equation sought is actually the
Markovian SLE [8] for the PDF ¢(r;r;|t) in the extended
space {r}={x®y®z} space. For the Laplace transform
Q(e)=[{dtg(t)e this equation is written as

€Q=d8r—r)-[A+8y—-y)Ll;+L10.  (21)
)

only in the replacement of € by Q=e+L and the evident

change of S-function describing the initial condition. Natu-
rally, for the PDF averaged over y(z) process,

This equation is seen to differ from Eq. (18) for P(x,y

R(9=R,(e = J dip,(1)e™®, (22)
0

one gets a CTRW-like equation (sometimes called the non-
Markovian SLE [7]) similar to Eq. (15). In particular, for the
Laplace transform of the average evolution operator R(e)

=U,(t) [generalizing U, () defined in Eq. (8)] this equation
reads

[+ 2, MO)]U, =po; with O=e+l  (23)

and the initial condition p,o;=38(x—x;)8(z—z;). Notice that
the order of operators Zfa and M (Q) is important since they
do not commute with each other.

In the time representation [i.e., for U, (r)] Eq. (23) is writ-
ten as
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N l ~
0,1=—LUn—£a(z)f dt™M(D)e U (1 - 7). (24)
0

This equation should be solved with the initial condition
U,(0)=68(x—-x;) 8(z~1z;).

To qualitatively interpret Eqs. (23) and (24) within the
CTRW approach it is worth noting that, according to the SLE
representation (10), the time-dependent-field affected CTRW
can be considered as a sequence of jumps governed by the
z-dependent operator £;(z). The CTRW process is accompa-
nied by the simultaneous evolution of the parameter z(2),

determined by the operator ¢~ This operator will enter in
formulas describing CTRW evolution in the form of the

product W(¢)e ™ which for the Laplace transform W(e) just

corresponds to the replacement € by Q=e+L in W(e) thus
resulting in Egs. (23) and (24).

Rigorous equations (23) and (24) allow one to describe
CTRW evolution affected by a time-dependent field in very
general assumptions on the form of the time dependence
which can be either deterministic (dynamical) or stochastic.

Noteworthy is that in the case of the deterministic process

governed by L ie,a dynamical type of time dependence of
ﬁa(t)Eﬁa(zc(zi|t)), the solution ﬁn(t) of Eq. (24) can be
represented in the form similar to that obtained above for
Markovian processes [see Eq. (14)]:

0}10) = Un(z7zi|t) = én(t) 6[2 - Zc(zilt)]’ (25)

where G, (7) is the operator in {x} space satisfying a non-
Markovian CTRW type equation, that can be considered as a
generalization of Eq. (4):

G,=- ﬁa(zc(t))f dtM(7)G,(1 - 7). (26)
0

In deriving Eqg. (26) one should take into account the rela-
tions el z-z,(t-7]=8z-2.()] and L (z)dz-2.1)]
=£a(zc(t))é[z_zc([)]'

This equation coincides with that proposed in Ref. [5]. Tt
is easily seen that the average PDF py(x,x;|?) calculated with
the use of Eq. (9), which is applicable in the non-Markovian
case as well, also satisfies Eq. (26).

The above analysis shows that in the case of the determin-
istic time dependence of force, the force effect on the sub-
diffusing particles is correctly described by Eq. (26) for the
PDF p(x,?) in {x} space, which was derived in Ref. [5] with
the use of not quite rigorous (somewhat intuitive) arguments.

V. APPLICATIONS

As we have already pointed out, the SLE approach pre-
sented above is valid for any dependence F(x,1)= F(x,z(r)).
In this work, however, we will restrict ourselves to the analy-
sis of the simple model of x-independent force:

F(x,t) = F(x,z(t)) = Fyz(1). (27)

This analysis will illustrate the correctness of predictions
of works [5,6] in the case of dynamical (deterministic) F(x, 1)
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time dependence. It will also demonstrate the specific fea-
tures of this effect for the stochastic F(x,) time dependence.

A. General results

Our study is based on the analysis of the time evolution of
the moments of the PDF f)yz(x|t) [averaged over y(r) and z(¢)
processes], m,(t)=[dxx"p,.(t). For this analysis we need to
specify the initial PDF p;(x). For simplicity we will assume
the initial condition p;(x)=d&(x), for which, taking into ac-
count the relation (9), the problem reduces to manipulations
with 0“0) satisfying Eqgs. (23) or (24).

Instead of moments m,(¢), it is more convenient to ana-
lyze their Laplace transforms 77,(€) which can be expressed
in terms of moment operators in the {z} space

A;In = dxx"ﬁy(x,()) : (28)

i, (€) = (M,). = f dz f XM De@.  (29)

As is seen from Eq. (23) the operators M,(e) satisfy simple
equations,

OM,, =nfzM(O)M,,_, + n(n - 1)D M Q)M,_,, (30)

for n=2 with M_,=0 and M,=Q"", in which f=D Fz.
Solution of these equations and substitution into Eq. (29)
yields for Laplace transforms of time derivatives of the mo-
ments

my(€) = [z®(Q)).,  my(€) = fo(e) + fia(e),  (31)
with
Bo(€) = 2D (D)., fia(€) = L P(D)P)..  (32)

Here ®(Q)=Q""M(Q).
In what follows we will concentrate on the analysis of
force-dependent terms. The force-independent contribution

tio(€) was discussed in detail earlier [4].
After the inverse Laplace transformation of expressions
(31) and (32) one gets i(1)=2D (1),

my (1) =fff dzdz;zg(z,z,|t) o (z;), (33)

() =1 J]f dzdidz,-sz dig(z,z
0

In these formulas

1-1g(Zz1)o(z,).

(34)

) = ple)(ale M 2), (35)

where (z|e™!![Z) is controlled by the model of z() modula-
tion, while ¢(f)=(2i)~! f’fwdee‘lM (€)e is determined by
the CTRW model considered and for the subdiffusion model
[M(e)=€"%,(a<1)]

8(z,z
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() =T (a)r* !, (36)

B. Harmonically oscillating force

In the model of harmonically oscillating force (11) in
which L [Eq. (12)] describes dynamical motion in the har-
monic potential, one gets (z|e ™ [z)=dz—z.(Z|t)], where
zc(2|t)=(zc(2|t),vzf(i|t)) is the trajectory of dynamical mo-
tion with z.(r=0)=Z in the phase space {z}.

Substituting this formula into Egs. (33)—(35) one obtains
po(D)=2D I (1+a)r®,

my (1) =ff d7z (1) p(7), (37)
0

(1) =f2f dfzc(?)dezc(T)qﬁ(?— De(n),  (38)
0 0

where z.(¢) is given by Eq. (11).
For brevity, we will restrict ourselves to the discussion of
the long time behavior of the moments only:

—00

m (1) = (flw®)sin(¢ + wa/2), (39)

m(t) = y(@)f(tw), (40)

where f=D Fyz, and y,(a)=cos(ma/2)/[2'(1+a)].

These formulas predict some peculiarities of the subdiffu-
sion response to oscillating force. First, m;(¢) appears to be
nonzero with asymptotic value (at f—o0) independent of
time and harmonically oscillating as a function of the initial
phase ¢ of force oscillations. Second, the force-dependent
part w,(f) is anomalously large, increasing in time, so that
() po(t)=cos(ma/2)[f?/ (4D %] is independent of
time. Third, in the case of conventional diffusion, i.e., at «
— 1, uy(1)/t*—0, as should be.

The analysis of exact formulas (39) and (40) shows that
for ¢=0 they are similar to those derived in Ref. [5] (as
expected) except for a slight difference in the analytical rep-
resentation of results.

C. Stepwise oscillating force

Here we will briefly discuss the model of stepwise oscil-
lating force. In this model the equation proposed in Ref. [5]
is found to be correct [6]. The exact method allows one to
check the results obtained in Ref. [6].

The model is defined as z(¢)=zo(~1)[2/™], where 7, is the
oscillation period and [x] denotes the integer part of x. It can
also be represented as z(f)=z.(f)=2__z,e", where o
=2m/ 7, and z, are given by z,,=0, z,,,==2i/[7(2n+1)]
with z_n=z:.

As mentioned above, the case of z.(f) represented as a
superposition of harmonically oscillating functions can be
described by assuming z.(r) modulation to result from dy-
namical motion in a harmonic potential in the multidimen-
sional space z=(zl,vZl e 30 ...). In this case formulas
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(33) and (34) predict the same expressions (37) and (38) for
the moments, which yield

t—

my(1) = () (2f/0%), (41)

t—©

palt) = (@)t w)*. (42)

Here the functions ¥,(a) and %,(a) are defined as ¥,(a)
=2[1-2"1*]¢(1+ @)sin(ma/2), Vo(a)=[1-2"*¢(2
+a)I'(1+a), where {(x) is the Riemann’s zeta function.
Obtained results agree with those of Ref. [6] thus con-
firming the correctness of equations applied in this work.

D. Fluctuating force

Of great interest is also the case of fluctuating force F(z),
i.e., Markovian fluctuating z(), which can easily be analyzed
with the use of the proposed approach. In this case the mo-
ments m;(f) and w,(f) can be obtained in analytical form
under fairly general assumptions on the nature of z(¢) fluc-

tuations. The operator L, which determines the properties of
Markovian fluctuations [see Eq. (7)], is assumed to have the
equilibrium state o,(z) and the initial distribution in {z} space
is taken to be equilibrium: o;(z)=0,(z). We also assume that
z(r) is a stochastic process with vanishing mean value,
(z(t))y=(0,|z(1)|o,)=0, which actually means that m,(#)=0 (in
this bra-ket notation (| = [dz [7] and |o;)=|0,)).

The behavior of the second moment u,(7) essentially de-
pends on that of the pair correlation function K (1)
=(z(0)z(1))=(0,|ze7"'z|o,) or more exactly on its asymptotic
behavior at r— oc. To understand the main specific features of
the function wu,(7) we will consider the simple model

K(t)=()/[1 + (t/7.)"], (43)

where 7. is a characteristic correlation time. The time depen-
dence u,(r) appears to be substantially different for two
cases:

(a) rapidly decreasing K(r), B> «,

(b) slowly decreasing K(t), B< a.

Both cases can conveniently be analyzed using Egs. (31)
and (32) for the Laplace transforms.

For brevity, we consider only the long time limit (i.e., the
limit €é—0) in which

fire) = fe' ()| 20(D)2)|a), (44)

where |o,) and (o,| are the equilibrium states of the operator

L.

With the use of this expression one can easily get the
analytical expressions for w,(¢) for both types of K(z) depen-
dence.

1. Rapidly decreasing K(t), B> «

In this case

PHYSICAL REVIEW E 78, 051121 (2008)

11—

m(£)=0 and p,(1) = I7'(1 + @)f*(7)", (45)

where f:DaFO\"@ and the characteristic time 7 is ex-
pressed in terms of the correlation function K(7)=(z(0)z(1))

=(o,|zet7|o,):
= f k dtK(1) b(t)/{Z2). (46)
0

Notice that the inequality 8> « ensures finiteness of the in-
tegral in Eq. (46) and thus finiteness of 7.

It is seen that for 8> « the characteristic features of u,(r)
are similar to those obtained in the case of oscillating force

with f and  replaced by f and 7', respectively. Noteworthy
is, however, that unlike this case, for fluctuating force
uy(1)/1* is finite at @ — 1, as expected. Note also that for 8
> « the specific properties of z(¢) fluctuations manifest them-
selves only in the value of the characteristic time 7, i.e.,
actually, in the amplitude of the asymptotic dependence

Ho(1).

2. Slowly decreasing K(t), <«

In the case of slow decay of K(z) [when the integral (46)
diverges] the properties of force fluctuations determine not
only the amplitude of the function u,(¢) but also the form of
time dependence itself.

In accordance with formula (44) the behavior of j,(e
—0) is essentially depends on

(a,| Z(I)(Q)z)|a'e>=f dte™K(1) p(r) ~ €%, (47)
0

Substitution of this relation into Eq. (44) and subsequent
inverse Laplace transformation yields

t—®

my(t) =0 and u,(t) ~ >*75. (48)

For B=a this expression predicts the time dependence
() ~t* coinciding with that obtained at 8> a [Eq. (45)],
as expected.

Of certain interest is the limit 8— 0, corresponding to the
case of static fluctuations, in which u,(#) ~ #>%. This behavior
can easily be understood taking into account that in the static
limit the second moment u,(7) is directly related to the
square of the first moment m,(z,t) for fixed, i.e., time-
independent, parameter z (for time-independent force F), av-
eraged over distribution of z (over distribution of forces):
,uz(t)~(m%(z,t))z. In this relation the time dependence
m,(z,1) can be obtained, for example, with use of Eq. (37)
with z.(f)=const, i.e., with z.(f) independent of time:
(m,(z,1)) ~t*. Therefore we arrive at the estimation u,(z)
~1*% which agrees with Eq. (48) (for 8=0).

Thus, according to formula (48), in the limit of anoma-
lously slow decrease of the correlation function K(z) of z(z)
fluctuations the increase of the parameter S, i.e. more fast
decay of K(z), results in pronounced slowing down of the
growth of the second moment u,(7) with time.
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VI. CONCLUDING REMARKS

We analyzed the effect of a time-dependent field on
CTRWs using the rigorous method based on the Markovian
representations of the CTRW and a time-dependent field.
With the use of this method the rigorous non-Markovian SLE
is derived, which describes the effect of a time-dependent
field on non-Markovian CTRWs. In the case of deterministic
(dynamical) time dependence the obtained equation turns out
to coincide with the those proposed in Refs. [5,6]. For sto-
chastic time dependence, however, the equation, proposed
earlier, is inapplicable and the effect of the fluctuating force
can be treated only by means of the non-Markovian SLE.

The rigorous SLE is applied to describing the field effect
on subdiffusive motion. Obtained formulas (39)—(48) dem-
onstrate some interesting specific features of the response of
anomalous subdiffusive systems:

(i) In the case of deterministic time dependence of the
force, i.e., deterministic dependence z(), the first moment
(average displacement) is, in general, nonzero (even in the
long time limit) depending on the oscillation phase. The
time-dependent force results in the anomalously strong
force-dependent contribution to the second moment wu,(7),
which increases with time. At long times the dependence on
time w,(¢) is universal and is determined only by the diffu-
sion anomaly parameter a(a<<1): u,(r) ~1*.

(ii) For stochastic time dependence of the force F(z(¢)) the
contribution to the second moment u,(f) also grows with
time but the function form is not universal, depending on the

PHYSICAL REVIEW E 78, 051121 (2008)

parameter 8 which characterizes the decay of the pair corre-
lation of z(r) fluctuations [see Eq. (43)]: w,(z) ~t* for B
> a and u,(f) ~ 24P for B<a.

The results obtained in our work are not only of principle
value but also of certain interest for applications. A number
of possible applications are discussed in reviews [3,4]. In
addition, also worth mentioning are recent investigations of
the kinetics of charge carrier recombination and transient
conductivity in some disordered semiconductor, in which the
mobility of charge carriers was shown to be dispersive (sub-
diffusive) [9,10]. The proposed theoretical approach can be
very helpful for the interpretation of the results of such in-
vestigations.

In conclusion, it is worth noting that the proposed Mar-
kovian SLE approach (10) for describing the influence of
time-dependent fields is applied only to one particular prob-
lem of the theory of force induced effects in stochastic sys-
tems. This approach is, however, fairly general and can be
very suitable in studying many time-dependent-field affected
stochastic processes [1,2,11] since it reduces the study to the
analysis of characteristic features of time-independent opera-
tors (their spectra, eigenfunctions, etc.). Some applications of
the SLE approach (10) are currently under consideration.
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